Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free fatty acid (FFA) production in bacteria is a key target for metabolic engineering. The knockout of the acyl-ACP synthetase (AAS) prevents reincorporation of FFA into the fatty acid biosynthetic cycle and is widely used to enhance their secretion. However, the role of AAS in membrane lipid remodeling under environmental stress, such as altered temperature, remains poorly understood. In cyanobacteria, temperature shifts are known to affect fatty acid desaturation and membrane fluidity, yet it is unclear whether AAS contributes to these adaptive responses through re-esterification of membrane-released acyl chains. We elucidated unique aspects of fatty acid metabolism in response to temperature changes in biotechnologically relevant microbes with the development of an efficient method for quantifying acyl-ACP intermediates using anion exchange chromatography (AEX). In Escherichia coli, which performs desaturation during fatty acid biosynthesis, we detected saturated and unsaturated acyl-ACPs that confirm biosynthetic pathway operation. In the cyanobacteria, Picosynechococcus sp. PCC 7002 and the Δaas strain, changes between two temperatures were interpreted with support from proteomic and lipidomic analyses and indicated that the AAS is tied to membrane lipid remodeling. Further, polyunsaturated acyl-ACPs were detected in the Δaas strain, which was unexpected because fatty acid synthesis does not produce polyunsaturates in cyanobacteria, suggesting the presence of alternative acyl-activating enzymes or unknown acyl-ACP desaturases. This study highlights the possible link between acyl chain recycling and lipid remodeling in cyanobacteria and demonstrates the utility of AEX-based acyl-ACP profiling in dissecting fatty acid metabolism.more » « less
-
Aquatic photosynthetic systems account for approximately one-half of all global carbon assimilation and could be a significant source of renewable fuels and feedstocks. However, rapid growth and biomass production in algae have not always translated into high product yields, partly because central metabolism is context specific, with metabolic fluxes being influenced by nutrient conditions and other environmental factors. In the green microalgaChlamydomonas reinhardtii(Chlamydomonas), mixotrophic cultures (acetate + light) grow far faster than phototrophic (light only) or heterotrophic (acetate + dark) cultures, even though acetate partially suppresses photosynthesis. Here, an isotopic dilution strategy with unlabeled acetate was combined with13CO2transient labeling to perform isotopically nonstationary metabolic flux analysis (INST-MFA) and to directly compare autotrophic and mixotrophic metabolism in Chlamydomonas supported by data from transcriptomics, proteomics, and metabolomics. INST-MFA indicated that acetate induces a synergistic rewiring of metabolism, conserving carbon by using the glyoxylate cycle and suppressing gluconeogenesis, the latter of which was discordant with omics results and prior models. Additionally, our data provide a plausible rationale for the well-known suppression of photosynthesis by acetate. We propose that reduced total protein content in mixotrophic versus phototrophic cells, much of which is attributed to reduced levels of photosynthetic proteins, decreases the costly metabolic burden of protein synthesis and represents a growth rate optimization strategy.more » « less
-
Koley et al. indicate that fatty acid oxidation occurs concomitantly with fatty acid biosynthesis in multiple plant tissues, including seeds that are thought to stably house storage reserves. This study suggests that some lipid breakdown and fatty acid oxidation is the rule and not the exception in plant metabolism.more » « less
An official website of the United States government
